

Boolean Logic and Truth Tables
Computer programs use logic to control execution by comparing operands. In the real

world control and embedded systems frequently deal with individual bits in order to control

specific operations or to determine the condition of part of a system. For example, a bit might

be turned on to light a lamp or activate a relay, or a bit might be off to indicate a switch is on.

Both systems are based on Boolean logic.

Boolean logic, developed by George Boole (1815-1864), is simply a way of comparing

operands or bits and determining their truth value. It uses what are called operators to

determine how the bits are compared. They simulate the gates that you will see in the hardware

section you will read shortly.

Think of operators as boxes with multiple inputs and one output. Feed in various

combinations of bit values, and the output will be high or low depending on the type of

operation. The examples show 2 inputs, although gates can have more. Also, gates are often

combined to form more complex logic. A modern microprocessor contains huge numbers of

them with many inputs and many varying combinations. Please note that the terms on, high and

1 will be considered the same logical state, and off, low and 0 will be considered the same

logical state in the discussions that follow. Typically 1 is used to indicate true and 0 is used to

indicate false and in the C programming language true is actually any value not equal to 0 and

this can be used in powerful ways.

The Boolean operators used most often are AND and OR and NOT. The AND operation says

if and only if all inputs are on, the output will be on. The output will be off if any of the inputs

are off. The OR operation says if any input is on, the output will be on. The NOT operator

negates the input (e.g. True  False and False  True). It's easy to see all of the

combinations by using what are called Truth Tables, illustrated below. At the bottom of each

table is shown the schematic symbol found in circuit diagrams.

Basic Logic Gates
There are three basic logic gates each of which perform a basic logic function, they are called

NOT, AND and OR. All other logic functions can ultimately be derived from combinations of

these three. For each of the three basic logic gates a summary is given including the logic

symbol , the corresponding truth table and the Boolean expression.

The NOT gate

The NOT gate is unique in that it only has one input. It looks like

The input to the NOT gate is inverted i.e the

binary input state of 0 gives an output of 1 and the binary input state of 1 gives an output of 0.

is known as "NOT A" or alternatively as the complement of . The

truth table for the NOT gate appears as below

0 1

1 0

The AND gate

The AND gate has two or more inputs. The output from the AND gate is 1 if and only if all of

the inputs are 1, otherwise the output from the gate is 0. The AND gate is drawn as follows

The output from the AND gate is written as

 (the dot can be written half way up the line as here or on the line. Note that some textbooks

omit the dot completely).

The truth table for a two-input AND gate looks like

0 0 0

0 1 0

1 0 0

1 1 1

It is also possible to represent an AND gate with a simple analogue circuit.

Short Circuit Evaluation

We and the computer always strive for efficiency. Have a look at the above truth table. Is there

any condition where we can evaluate just a single operand (input) to determine the result

thereby saving the computation time to evaluate the 2nd operand in conjunction with the 1st

operand?

Note the AND operator is also known as logical conjunction and is also represented by ^

The OR gate

The OR gate has two or more inputs. The output from the OR gate is 1 if any of the inputs is 1.

The gate output is 0 if and only if all inputs are 0. The OR gate is drawn as follows

The output from the OR gate is written as

The truth table for a two-input OR gate looks like

A + B

0 0 0

0 1 1

1 0 1

1 1 1

Short Circuit Evaluation

Have a look at the above truth table. Is there any condition where we can evaluate just a single

operand (input) to determine the result thereby saving the computation time to evaluate the 2nd

operand in conjunction with the 1st operand?

Note the OR operator is also known as logical disjunction and is also represented by v

.

Desk Check Example

Set A equal to 7

Set B equal to 6

Set C equal to 13

Set D equal to 4

What is the truth value? Hint, link up the parenthesis, create memory locations as you

would do in a desk check and work left to right adhering to mathematical precedence.

The answer has been whited out so you may change the font of the whitespace to black to

reveal the answer

If (NOT ((B < A) AND ((C > D) OR (D == A))))

Answer: False

(B < A) => True

(C > D) => True so we don’t need to evaluate OR (D == A) - Short Circuit Evaluation

Now True AND True is True

Not True => False

Now this one which has some bad programming practices but is good for demonstration.

There are several interpretations or uses of the following code:

In Boolean Algebra, 1 is true and 0 is false

In Linux Scripting an exit code of 0 is a successful exit whereas anything else is an

exit with errors.

If ((B == (A – (C > D))) AND (NOT (((A + B) == C) OR (NOT (True == False)))))

Answer: False

(C > D) => True

(A – True which is 1) => 6

(B == 6) => True

(A + B) => 13

(13 == C) => True – no need to continue OR evaluation due to Short Circuit Evaluation Not

True => False

True AND False => False

Optional

Other Logic Gates

The three basic logic gates can be combined to provide more complex logical functions. Four important logical

functions are described here, namely NAND, NOR, XOR and XNOR. In each case a summary is given

including the logic symbol for that function, the corresponding truth table and the Boolean expression.

The NAND gate

The NAND gate has two or more inputs. The output from the NAND gate is 0 if and only if all of the inputs are

1 otherwise the output is 1. Therefore the output from the NAND gate is the NOT of A AND B (also known as

the complement or inversion of .). The NAND gate is drawn as follows

where the small circle immediately to the right of the gate on the output line is known as an invert bubble.

The output from the NAND gate is written as (the same rules apply regarding the placement and

appearance of the dot as for the AND gate - see the section on basic logic gates). The Boolean expression

reads as "A NAND B".

The truth table for a two-input NAND gate looks like

0 0 1

0 1 1

1 0 1

1 1 0

The NOR gate

The NOR gate has two or more inputs. The output from the NOR gate is 1 if and only if all of the inputs are 0,

otherwise the output is 0. This output behaviour is the NOT of A OR B. The NOR gate is drawn as follows

The output from the NOR gate is written as which reads "A NOR B".

The truth table for a two-input NOR gate looks like

0 0 1

0 1 0

1 0 0

1 1 0

The eXclusive-OR (XOR) gate

The exclusive-OR or XOR gate has two or more inputs. For a two-input XOR the output is similar to that from

the OR gate except it is 0 when both inputs are 1. This cannot be extended to XOR gates comprising 3 or more

inputs however.

In general, an XOR gate gives an output value of 1 when there are an odd number of 1's on the inputs to the

gate. The truth table for a 3-input XOR gate below illustrates this point. The XOR gate is drawn as

The output from the XOR gate is written as which reads "A XOR B".

The truth table for a two-input XOR gate looks like

0 0 0

0 1 1

1 0 1

1 1 0

